1,2,3,3,6,5,10,8,15,13

 2025-09-13  阅读 83  评论 0

摘要:The given sequence alternates between two distinct patterns:
1. Triangular Numbers: At odd position

The given sequence alternates between two distinct patterns:

1,2,3,3,6,5,10,8,15,13

1. Triangular Numbers: At odd positions (1st, 3rd, 5th, 7th, 9th):

( 1, 3, 6, 10, 15 )

These follow the formula ( frac{n(n+1)}{2} ), where ( n ) starts at 1 and increments by 1 each step. The next term is ( 21 ) (since ( frac{6 cdot 7}{2} = 21 )).

2. Fibonacci-like Sequence: At even positions (2nd, 4th, 6th, 8th, 10th):

( 2, 3, 5, 8, 13 )

Each term is the sum of the two preceding terms. The next term is ( 21 ) (since ( 8 + 13 = 21 )).

Next Terms:

The sequence continues as ( 21 ) (11th term, triangular) followed by ( 21 ) (12th term, Fibonacci). Thus, the next two terms are:

[

boxed{21, 21}

]

版权声明: 知妳网保留所有权利,部分内容为网络收集,如有侵权,请联系QQ793061840删除,添加请注明来意。

原文链接:https://www.6g9.cn/qwsh/dd9f3AD5VVFhSAQ.html

标签:101513

发表评论:

关于我们
知妳网是一个专注于知识成长与生活品质的温暖社区,致力于提供情感共鸣、实用资讯与贴心服务。在这里,妳可以找到相关的知识、专业的建议,以及提升自我的优质内容。无论是职场困惑、情感心事,还是时尚美妆、健康生活,知妳网都能精准匹配妳的需求,陪伴妳的每一步成长。因为懂妳,所以更贴心——知妳网,做妳最知心的伙伴!
联系方式
电话:
地址:广东省中山市
Email:admin@qq.com

Copyright © 2022 知妳网 Inc. 保留所有权利。 Powered by

页面耗时0.0433秒, 内存占用1.7 MB, 访问数据库19次